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LARGE ELASTIC DEFORMATIONS OF SHELLS
WITH THE INCLUSION OF TRANSVERSE NORMAL STRAINt

Y, BIRICIKOGLUt and ARTURS KALNINS§

Lehigh University, Bethlehem, Pennsylvania

Abstract-For large, elastic deformations and incompressible materials, the thickness ofa shell must change when
the shell is being stretched. In this paper, a theory of shells is given which admits a prescribed thickness change
on the boundaries of the shell and is capable of predicting a symmetric thickness change throughout the shell.
The governing equations are written for an incompressible material with a Mooney-type constitutive law.

INTRODUCTION

A THEORY of shells which is subjected to the kinematic constraint that the thickness of the
shell before and after deformation remains the same is not realistic when large strains are
admitted in the deformation process. To enforce such a constraint, the density of the
material would have to change in a special way during deformation, and since most
materials which are capable of undergoing large strains are nearly incompressible, such a
density change cannot be admitted.

A considerable amount of literature can be found on the subject of the removal of the
assumption that the thickness remains the same, or, equivalently, that the transverse normal
strain is zero, but most of it is aimed at the linear theory. A thorough examination of this
topic via the linear theory is included in an NACA report by Hildebrand et ai. [1], where a
shell theory is derived which incorporates quadratic terms with respect to the thickness
coordinate in all displacement components. The thickness change is effected through the
linear and quadratic terms in the transverse displacement component which is assumed in
[1] in the form

(1)

where (x l' xz) are the coordinates on the reference surface and x 3 is directed along its
normal. The linear term, f33' represents a thickness change which is symmetric about the
middle surface of the shell, while W z gives rise to an antisymmetric thickness change.

When f33 and Wz are included in the theory, then, as shown in [1], additional resultants,
sa and Ta, which are the first and second moments of the transverse shear stress, appear in
the governing equations. The inclusion of sa and T a permits the prescription of additional
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boundary conditions which involve f33' sa, w2 and P. Thus, if sa is retained, then a
symmetric thickness change can be prescribed on the boundaries, while the retention of T a

admits the prescription of an antisymmetric thickness change.
The complexity of the final form of the equations of[lJ led to the reconsideration of the

effects of the transverse shear and normal strains by Reissner [2J and Naghdi [3J, again
by means of the linear theory. Both [2J and [3J present theories in which sa and Ta are
assumed zero. This simplification, hGwever, is achieved at the expense of not being able to
prescribe the thickness change along the edges of the shell.

In the realm of finite deformations, solutions of various shell problems have been
obtained by means of the membrane theory for elastic, isotropic, incompressible materials.
For example, Rivlin and Thomas [4J analyzed the strain distribution around a hole in a
circular sheet, Adkins and Rivlin [5J solved the problem of the inflation of a circular
membrane, Kydoniefs and Spencer [6J solved the inflation problem of a circular torus, and
Kydoniefs [7J presented solutions to the same problem without any restriction to the cross
section of the torus. In all of these papers, the additional resultants sa and T a are assumed
zero, which is consistent with the assumption of a membrane state, so that the thickness
change cannot be prescribed on an edge of the shell. However, since the material is assumed
incompressible, the thickness change which is necessary to maintain an incompressible
state can be calculated throughout the shell from the incompressibility condition.

The object of the present paper is to derive for a shell a governing system of equations
which can admit the prescription ofa definite symmetric thickness change on the boundaries
and is capable of predicting the thickness change throughout the shell, when the strains
on the middle surface are finite. The material is assumed elastic, isotropic and incom
pressible.

While the effects of bending are included in our analysis, it is assumed that the incom
pressibility condition need only be satisfied on the middle surface of the shell, so that the
quadratic term in (1) and T a can be neglected. This assumption restricts the deformation
to cases where the membrane strains are much larger than the bending strains over most of
the shell. It admits only a symmetric thickness change and excludes any antisymmetric
motion of the bounding surfaces of the shell with respect to its middle surface. Such anti
symmetric motion would have been produced by bending strain if the incompressibility
condition were enforced throughout the shell w;lll.

As far as the shell theory is concerned, our approach for the derivation of the governing
equations parallels that used by Naghdi and Nordgren [8}. Aside of our specialization to
incompressible materials and convected middle surface coordinates, the essential difference
between the equations of [8J and those of this paper lies in our admission of a change in the
thickness of the shell which is not admitted by the Kirchhoff hypothesis used in [8J.

The basic field equations and the kinematical quantities, which are required for the
admission of a thickness change, could have also been obtained from the Cosserat surface
theory derived, for example, by Green et al. in [9J. We have not adopted this approach,
because the inclusion of such concepts as incompressibility, which is a natural condition of
a 3-dimensional theory, seems to be more straightforward with the approach used in [8J.

Tensor notation is used throughout the paper. The quantities belonging to the deformed
shell are denoted by lower case letters. while their duals in the undeformed shell are denoted
by capital letters. Greek indices take the values I and 2, while Latin indices take the values
1, 2 and 3. Diagonally repeated indices denote summation over the range of the indices.
Comma denotes partial differentiation.
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STRAIN

Let s denote the middle surface of the deformed shell, and let us define a general
coordinate system Xi such that X" are the curvilinear coordinates on the middle surface of
the deformed shell and x 3 is the distance measured along the normal of the middle surface
of the deformed shell. Let a 3(x") be the unit normal vector, and let the base vectors of the
X" corrdinates be defined by

(2)

where r(x") is the position vector of a point lying on the deformed middle surface of the
shell. The position vector of a generic point of the deformed shell space is then

(3)

subject to the restrictions

(4)

A similar coordinate system is defined for the undeformed shell and is denoted by
X A = (X'\ X 3

). Therefore, the position vector of a point belonging to the undeformed shell
is given by

(5)

together with

(6)

We now consider problems for which, except in localized zones, the membrane stresses
are large in comparison with the bending stresses, so that, as far as the thickness change is
concerned, over most of the shell the symmetric part of the transverse normal strain is the
dominant factor. Thus, as a first approximation, we assume that the deformation of the
shell is characterized by the mapping

(7)

and its inverse. We are then assuming that the middle surface coordinates are convected,
and the resulting deformation is such that the normal lines to the undeformed middle
surface remain normal lines to the deformed middle surface, but the surfaces originally
parallel to the undeformed middle surface do not remain parallel to the deformed middle
surface of the shell.

From (7), the deformation gradients are given by

o 0

o 1 o (8)

and hence

(9)



434 V. BIRICIKOGLU and ARTURS KALNINS

Since the inverse of the mapping (7) exists, we can solve equations (8) to get

o
o
1

o
o (10)

and hence

IX;I = det X; I/A (11)

The square of the line elements in the deformed and undeformed shell are then given
by

ds2 = dr* . dr* = gij dxi dxi

dS2 = dR*. dR* GAB dxA dXB = cij dxi

where

are the space metric tensors of the deformed and undeformed shells and

c·· = GABXAXB.
l) .1 .J

(12)

(13)

(14)

(15)

(16)

is the covariant Cauchy-Green deformation tensor. Since we focus our attention to
incompressible materials, we prefer the use of the Cauchy-Green deformation measures
over the Almansi-Hamel strain tensor, because the constitutive law will be stated in terms
of Cii - Owing to the special shell coordinates employed in describing the deformation, the
metric tensor of the deformed shell space becomes

gap = r~ -r;p = f1;!1pa""

ga3 = r~ . a3 = 0

g33 = a3 · a3 1

where

is the surface metric tensor of the deformed shell and

(17a)

(17b)

(17c)

(18)

(19)

is the so-called shell tensor, b~ is the mixed curvature tensor, whose covariant components
are given by

(20)

Let v be the displacement vector which maps the points of the undeformed shell space
onto the points of the deformed shell space. Because of the special mapping assumed by (7),
the displacement vector must be of the form

(21)
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In (21), va and v3 denote the shifted components ofthe displacement vector and are related
to the components of u (middle surface displacement vector) and ~ (rotation vector) by

(22a)

(22b)

Since the deformations are assumed to be large, linear displacements in x 3 will lead to
nonlinear strain expressions which is characterized by

Ca/3 = OCa/3 +x 3
t ca/3 +(X 3)2 2ca/3

Ca3 = OCa3 +x 3
1Ca3

(23a)

(23b)

(23c)

where, the submeasures of Cauchy-Green deformation tensor, nCij' may be easily deduced
through (10), (16) and (22):

OCa/3 = Aa/3 = Qa/3-(4)a/3+4>/3a)+4>~a4><T/3+4>~a4>3/3 (24a)

lCa /3 = -2Ba/3/A = -2ba/3-(ka/3+k/3a)+b~4><T/3+bp4><Ta+k<T/34>~a+k<Ta4>~p+k~4>~+kN; (24b)

2Cap = (B<TaBp+A,aA,p/A2)/),2 = b<Tabp+b~k<Tp+bpk<Ta+k~k<Tp+k~k~

OCa3 = (/33-1)4>~a+(4>~a-(j~)/3<T = 0

1C,,3 = - A,JA3
= (/33 -1)/33," + /3f"P<T

OC 33 = 1/),2 = (l-/33f+/3<T/3<T

where, after Naghdi and Nordgren [8J, we have used

(24c)

(24d)

(24e)

(24f)

(25a)

(25b)

In the above expressions, a stroke denotes covariant differentiation with respect to the
deformed middle surface metric tensor Q"p,

The displacement components defined by (22) are not independent, but, because of (7),
they must satisfy the condition of zero transverse shear strain on the middle surface, namely
OCa3 = 0, which relates the rotations /3" to the middle surface displacements if, u3. However,
the transverse shear strain away from the middle surface can be expressed through (24e) and
(24f) as

(26)

and it only vanishes when the thickness change is constant with respect to x". When the
Kirchhoff hypothesis is fully invoked, i.e. when

which, from (7), implies that

A = 1

(27a)

(27b)
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then we must make j3 3 satisfy the two equations

(28a)

(28b)

It is evident from (26) that the satisfaction of (28b) implies the satisfaction of (28a).
Stress constitutive equations of incompressible elastic materials can be expressed in

terms of the contravariant Cauchy-Green deformation tensor cii and its inverse (c -1 )ii,

which are defined by the equations

(C- 1)iiCjk b~

Using the definition of cii' we can invert equation (29b) to give

(C-1)ij = GABX~AX~B

(29a)

(29b)

(30)

Since constitutive equations of shell variables involve integration along the thickness
of the deformed shell, explicit expressions of c ii and (c-1)ii as functions of x 3 are needed.
To this end, we recall that the shell tensor /1: is nonsingular and hence a unique inverse
exists which has the property

and, as shown by Naghdi [10], is expressible in convergent series of x 3 as

OC! "

(/1-1)~ = L b~(X3)"

"=0

"where the coefficients b: are given by

" "
b~ = b~b~ ... b;;b: = b:
~

n factors

Hence the contravariant metric tensor gii can be expressed as

g33 = I

where

aO'V = gO'VI X3=O

(31)

(32)

(33)

(34a)

(34b)

(34c)

is the contravariant surface metric tensor of the deformed shell. Similar results also hold
for the undeformed shell. The series expansions of cii and (C- 1)ij can then easily be obtained
from (29a) and (30) by using (8), (10), (32) and (34), together with their duals in the undeformed
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shell. The resulting expressions are

00 n
= aa"aPy L(C)"y(X 3 )n

n=O

n

where the coefficients (C)"y are defined by

o 0

(C)"y = (C)~~AaP

1 1 2 0

(C)"y = (C)~AaP - t C)~BaP

and for n ~ 2 by

in which
n n k n-k

(C)~~ = I (k+ l)(n-k+ l)(b)~(b)~
k=O

(35a)

(35b)

(35c)

(36a)

(36b)

(36c)

(37a)

(37b)

(37c)

(38)

n n
and (B)~ is the dual of (b): [defined by equation (33)] in the undeformed shelL

Finally, we need the relations between the tbicknesses of the deformed and undeformed
shells, which are denoted by hand ho, respectively. It follows from (7) that the thickness of
the deformed shell can be expressed as

f

hl2 fhO/2
h(xa) = dx 3 = A(Xa) dX3 = A(xa)ho

-h12 -ho/2
(39)
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(4ta)

(4Ib)

(4tc)

(43c)

(43b)

The function A(Xa
), which characterizes the symmetric thickness change, can be easily

expressed as a function of the displacement components by comparing the two alternative
descriptions of OC 33 as given by (24f), which leads to

),(xa) = {(I-f33)2+f3"f3,J- 112 (40)

EQUATIONS OF EQUILIBRIUM

In the absence of body forces, the stress equilibrium equations in normal coordinates
are (Naghdi [10], Section 5.2)

(f.lf.l~r"P)IP - flbpr 3P +(flf.l~r"3),3 = 0

(flr3P)IP+f.lflpb,,~rpa+(J1T33),3 = 0

"y~p-oE"yflf.l"f.lpr -

where C"y is the permutation tensor of the deformed surface, and

J1 = det Il~

Multiplication of(41a) and (41b) by x 3 and rearrangement of terms leads to

(flf.l:x3r"P)IP - f.lr"3 + (J1fl:x3r"3),3 = 0 (42a)

(flx3r3P)IP + f.lf.lpb""x3rP" +(f.lx3r 33),3 - f.lT 33 = 0 (42b)

With reference to [10], the stress resultant and couple tensors, per unit length of the
coordinate curves on the deformed middle surface, can be defined as

{ N~p} = fh
l
2 flf.l~ { \} Ta" dx 3 (43a)

M -h12 x

{Q"} = fh
l
2 f.l { 13}Ta3 dx3

S" -h12 X

f
hl 2

N 33 = 11T 33 dx 3

-h12

where h is the thickness of the deformed shell, NaP, Q" and M"P are the usual stress resultants
and eouples, while sa and N 33, which arise in connection with the symmetric transverse
normal strain effect, are the moment of the transverse shear stress and the average normal
stress, respectively, The equations of equilibrium in terms of stress resultants and couples
may then be obtained by integrating (41) and (42) across the thickness of the deformed shell,
which leads to

and

NP"IP-bpQP+za = 0

QP 1P +b"pNPa + [3 = 0

MP"IP- Q"+ma = 0

Sfl lP + bap,IIJPa N 33 +m3 = 0

(44a)

(44b)

(44c)

(44d)

(44e)



(45a)

(45b)

(45c)

(45d)

(47a)

(47b)
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In comparison to a shell theory subjected to the Kirchhoff hypothesis, or to the theory of
[2 and 3J, (44d) is an additional equilibrium equation which must be satisfied if the thick
ness change (or /33) is to be prescribed on an edge of the shell. This equation, however, is
contained within the general system of equations derived for linear theory in [1].

The effect of the inclusion of the thickness change is also displayed in the load terms,
which are obtained through the integration of (41) and (42), together with the appropriate
use of the Leibnitz rule of integral calculus, since the limits of the integrals are dependent
on xa

• Thus, the load terms are given by

la = 1"larP3Ih/2 -1.h [lIl1ar"PJh/2rrp -h/2 2,P rr" -h/2

13 - l"r33 Ih/2 -1.h [1I-r 3PJh/2- r -h/2 2,p r' -h/2

rna = 1"lax3(r"3 -1.h r"P)l h/2rr" 2,P -h/2

rn3 - l"x3(r 33 _1.h r 3P)l h/2- r 2 ,P -h/2

where

[J1.r3PJ~i/2 = J1.r 3Plh/2 + J1.r 3PI_h/2

Equations (45) reduce to the previously given expressions (Naghdi [1OJ, Section 5.1), if we
set h,p = O.

Since the thickness of the deformed shell may be variable with respect to xa
, the normal

direction of the deformed middle surface of the shell may not coincide with the normal
direction of the bounding surfaces (or faces) of the shell. One immediate consequence ofthis
is that a pressure load acting on the faces of the shell may have a component along the
tangent of the deformed shell. Since for rubber-like incompressible materials a pressure
load is more common than the loads in the tangential direction of the faces, we shall obtain
expressions for la and 13 in terms of a given pressure load.

Let us note that the equation of the upper face of.the deformed shell is given by

r*(xa) = r(xa)+th(xa)a3(xa) (46)

and let the unit outer normal and unit tangent vectors to the upper face be denoted by n
and tao Using (46), we get that

n = (r;l x r;2)11r;1 x r;21Ih/2 = nig
i
lh/2 = -tkh,aga+ka3Ih/2

ta = r~/lr~llh/2 = b~~ +tb~h,~a3Ih/2

where bars under indices are used to suspend summation,

ga= gapgp

g3 = a3

denote the contravariant base vectors of the shell space, eaP is the Cartesian permutation
symbol, and

(48a)

(48b)
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P+ = plh/2' P = pl-h/2

be the normal pressure on the upper and lower faces ofthe shell, respectively, measured per
unit area of the deformed faces of the shell. The stress boundary conditions require that

-p+n=tlh/2 (49)
where

t = riin,g.
I J

is the stress vector. The vector equation (49) is equivalent to the following scalar equations,
which, after some rearrangements, can be written as

( 3" I h a")1 I h a" I (50 )Jl r -2 ,ar h/2 =2Jl ,ag P h/2 a

Jl(r 33 -th,ara3)lh/2 = - JlPlh/2 (50b)

Similar expressions hold for the lower face of the deformed shell. The load terms can now
be obtained directly from (45) and (50) in the form

la = rt,uh,ligP"Jl~pJ~~/2 (5Ia)

P = -IJlPlh/iI2 (Sib)

It is clear that a pressure load has a component along the tangent of the deformed middle
surface.

In most applications, however, la may be much smaller over most of the shell than P.
To see the relative magnitudes of /a and 13 , we choose curvilinear coordinates on the middle
surface of the deformed shell such that

aaP = 0(1) (52)

(54b)

(54a)

(53a)

(53b)

(53c)

where 0 denotes the order of magnitude of the argument. Then the magnitudes of the other
terms of (51) are given by

Jlp = c5p- :x;3bp = c5p+O(h/r)

Jl = det Jlp = 1+O(h/r)

gaP = 1+O(h/r)

and hence, from (51), it follows that

/a = O(h,a[P+ +rJ)

/3 = -(p+ -P-)+O(~[p++P-J)

where r is the smallest radius of curvature of the deformed shell. It is evident that la is small
compared to 13 if

and then we may set

h,a = O(h)

la = 0

13 = -(p+-p-)

(55)

(56a)

(56b)
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as h -+ O. In those situations, however, where the deformed thickness of the shell is con
strained on some edges to be equal to the undeformed thickness, the contribution of
pressure to ['" as given by (51), may be significant.

CONSTITUTIVE EQUATIONS

For an elastic, isotropic, incompressible material, the stress constitutive equations are
given by (Rivlin [11], Section 4)

r ii = -pogii+2(c- 1 )iia 'L/a/l -2ciia 'L/aI2 (57)
where

(58)

denotes the strain energy function per unit undeformed volume, Po(x i
) designates the un

known hydrostatic pressure, and

11 = (c- 1
): (59a)

12 = (c-1))(C- 1){ (59b)

stand for the first and second invariants of the inverse Cauchy-Green deformation tensor.
For incompressible materials, the deformation must be isochoric which means that

(60)

13 being the third invariant (determinant) ofthe mixed inverse Cauchy-Green deformation
tensor. Recalling (30), we get that

(61 )

and hence

(62)

where g and G are the determinants of the metric tensors of the deformed and undeformed
shells, respectively. Because of the approximate form of the mapping (7), the incompress
ibility condition can be satisfied only on the middle surface of the shell, which from (62)
leads to

(63)

In (63),

a = la"pl = glx3=o A = IA"pl = Glx3=o (64)

represents the determinants of the surface metric tensors. Since the incompressibility
condition is satisfied only on the middle surface of the shell, the unknown hydrostatic
pressure Po(x i

) in the constitutive relations (57) cannot vary across the thickness and hence

(65)'

A model which approximates the incompressible isotropic rubber-like materials has
been suggested by Mooney and has a simple strain energy function of the form

(66)
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(68c)

(68d)

(68e)

(680

where L 10 and Lo1 are material constants. In the remainder of the paper, we shall confine
our attention to materials with a Mooney strain energy form.

The constitutive equations for stress resultants and couples are obtained by substituting
the stress constitutive equations (57) into (43) and then using (35) and (36). This process
leads to an infinite series representation for the stress resultants and couples, which after
truncation can be written as

N"P = h(Nt+N~Ph2/12)+O(h4) (67a)

M"P = M~Ph3/12+0(h4) (67b)

SIX = S~ h3/12 +0(h4) (67c)

N 33 = h(N~3+N~3h2/12)+O(h4) (67d)

These expressions are tensorially invariant in the sense of Naghdi [10]. The coefficients in
the above equations are given by

N':f = - poa"P +2 LI0 A"P-2 LOI a"YaP"Ay" (68a)

M~P = -2poa""b~+4 LI0 A""B~/A.-4LOI a"YaPb(b~A"b+b3AY(J-Bbi).)

-(be +oeb~)N'(/ (68b)

wl = - 3Poa'%Yb~b~ +6 Lto A"YB~B~/A.2

-2 LOI a"YaPb{(3b:b~A"b+4Mb~A(Jp+3b~b~Ayp)

-4(b~B(Jb + bjBy,,)/A + (BY(JBj + A,.yAjA?)/A,2}

(bP+oPb(J)M"y +(b"bp+l.o(JbbPbl'oP)N"Yy y (J 1 (J y 2 PI' (J b)' 0

S~ = (2L lO A"P+2Lol a"P/;,,2»).,II/;"

N~3 = -Po+2Ll0),2_2Lol/22

N 33 =2" A"PAA /A2
2 L.I0 ." .P

Since the transverse shear strain on the middle surface is assumed zero, the leading term
in the constitutive relation of Q" is zero. Consequently, the constitutive relation of Q" is
not used, but Q" is determined from the equilibrium equations.

In order to recover the previous results appropriate for membrane theory, we let

M"P = SIX = Q" = 0,

and then the equilibrium equation (44d) yields

N
33

= ° (69)

which serves for the determination of the unknown hydrostatic pressure Po from (68e) as

Po = 2 L 10A,2 - 2 LOI /)..2 (70)

Elimination of Po from the constitutive relation (67a) by means of (70) now gives

N"P = h{2 Ll0(A"P_).2a"P)-2 LOI (a"YaP"Ay(J-a"P/A,2)}

which is the constitutive relation used in membrane theory in [4--7].

(71)
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It may be of interest to compare (68) to the known results in case of infinitesimal
deformations of an isotropic, incompressible material. To this end, we first note that to the
first order in strains

so that

are constants. Furthermore, it can be shown that

(72)

(73)

where E is the Young's modulus of an incompressible material. To get the appropriate
constitutive coefficients valid for infinitesimal deformation we need the expression of the
deformed metric tensor which to the first order in strains are

apa = Apa +2oepa

apa = APu APYAU ;(2oey;(

where 20epu is the linearized middle surface strain tensor, i.e.

20epu 4>pu + 4>up (74)

Substitution of (73) and (74) into (68a), together with the use of (72), now yields

N(f = - PA"'P +(E/3)(A<X;( APa + A",aAP;()4>M (75)

where we have defined

(76)

which is an arbitrary hydrostatic pressure.
Equation (75) checks exactly with the corresponding constitutive equation derived

under the Kirchhoff hypothesis [10, § 6, equation (6.44)], if we observe that the Kirchhoff
hypothesis, coupled with the incompressibility condition, requires that

4>\ = 0 (77)

In a similar fashion, it can be shown that the remaining coefficients in (68) also reduce to
their linear counterparts given in [10].
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A6cTpaKT-)J,JIli 60JIbWHX, ynpymx ,LIe<!>opMaUHH H lfecll<HMaeMblX MaTepHaJIOB. TOJIWltHa nOJIlI<Ha.
B cJIy'lae paCTlIlI<eHHlI, H3MelfllTbCli. B rrpenJIaraeMOH pa60Te ,LIaeTCli TeOpltli 060JIO'leK, Y'lltTblBalOIlIali
3a,llaHHble H3MeHelfltli TOJIWHHbI Ha KpaliX 060JI'IKH, H crroc06Hali orrpe,LIeJIHTb cHMMeTplt'lecKoe H3MeHeHHlI
BO BceH 060JIO'lKe. npHBOJ\lITCli Orrpe,LIeJIlilOWHe ypaBHeHHlI ,llJIli Hecll<HMaeMOro MaTepHaJIa. C
KOHCTHTyTHBHOM 3aKOHOM MYHeli.


